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Stability of acoustic streaming flows in plane channels

A. Kwang-Hua Chu*
Department of Physics, Northwest Normal University, Gansu, Lanzhou 730070, People’s Republic of China
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We study the stability of acoustic streaming flows of normal fluids induced by a small-amplitude surface
acoustic wave propagating along the walls of a confined parallel-plane channel or slab in the incompressible
flow regime. The secondary flows derived are of negligible effect to the stability characteristic after comparing
with the primary flow. The governing equation which was derived by considering the weakly nonlinear
coupling between the wavy wall and viscous fluid is obtained and then the eigenvalue problem is solved by a
numerical code together with the associated dynamic and kinematic conditions. The value of the critical
Reynolds number was found to be near 4873 which is smaller than the case 5772 for conventional pressure-
driven flows.
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I. INTRODUCTION

Surface acoustic wave~SAW! is an interesting and impor
tant subject in physics as well as in many other scient
applications@1,2#. One example is the characterization
physical and chemical properties of complicated materi
The other example is related to the possible means of pu
ing molecules and atoms near or along surfaces under
perturbing influence of SAW@3#. In fact, with the latter, it
has been reported that people can make microflow syst
that could circulate heat-transfer fluids over silicon chi
reconstitute dried drugs, and possibly synthesize chemi
from liquid and solid constituents@4#.

While Moroney et al. used 4.7 MHz ultrasonic Lamb
waves in a 4-mm-thick composite membrane of silicon n
tride (2mm) and piezoelectric zinc oxide (1mm) to induce
pumping of water~inside a 250-mm-deep well!, Nguyen
et al. applied the same technique almost at the same
quency range to a microsystem of 15-mm and 500-mm chan-
nel for pumping air as well as water@4#. The key point is that
since the acoustic (A0-mode flexural plate! wave velocity is
much lower than the sound velocity in typical fluids, th
microstructure~system! acts as a nearly lossless acous
waveguide when in contact with a fluid. This acoustica
driven micropump offers the advantages of low operat
voltages and gentle pumping with no valves involved. Th
they could be also implemented in a wide range of physi
chemical, and biological applications~e.g., a few DNA sepa-
ration or monitoring! @5#.

Acoustic or steady streaming flow, or, the mean flow
duced by the interaction of surface waves and elastic bou
aries has been intensively studied since late 1800s@3,4,6–9#.
The original or relevant approach~considering the liquid!
could even be dated to early 1830s~by Faraday@8~a!#!. Note
that the theoretical treatment of streaming in an acoust
boundary layer at a plane wall was first conducted succ
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fully by Rayleigh @8~c!# but that was for standing wave
only. Faraday’s experiments also were on standing wa
The crucial step, from the point of view of both applicatio
and theory, was made in treating progressive~i.e., traveling!
waves. This was done originally by Longuet-Higgins@8~c!#.
He treated both the no-slip case and the zero-stress c
Later on, we also noticed that the first experimental con
mation of the streaming in traveling waves was found
Longuet-Higgins~1960! for the solid wall, and later by the
same author for a fluid-free surface@9#.

Recently, due to the rapid progresses in SAW sens
@10#, there are renewed interests in this research field. E
cially for gases, preliminary theoretical results in a free m
lecular and continuum regime showed some agreement
previous approaches~e.g., the latter regime compared wit
liquid! @3,4#. According to the calculation in the nearly con
tinuum regime, the flow velocity of the gas in a microtube
proportional to the second power of the SAW displacem
velocity ~product of the SAW amplitude and circular fre
quency! and this has also been experimentally confirm
~please see Ref.@11# for the cited references therein!.

We know, however, that most of the sensors, e.g., th
operated in microelectromechanical system~MEMS! appli-
cations, were performed in wide dynamic range and h
sensitivity. Microchannels built in the microstructure
MEMS are easily subjected to environment noises, such
oscillations or vibrations, externally excited traveling wave
etc. The stability characteristic for the acoustic stream
flow is thus of considerable importance to the flow control
mixing in microdomain since the bulk~cross-section! size of
the microchannel is at most a few tens ofO(mm) and the
wall of the microchannel is almost in submicrons or lesse

As we know, it is necessary to obtain curves of the neu
stability boundary from the stability equation~say, the well-
known Orr-Sommerfeld equation; the basic flow could be
shear flow or plane Poiseuille flow! and associated boundar
conditions for the description of the hydrodynamical tran
tion to turbulence in normal fluids. In this paper, we sh
first derive the relevant governing equations and bound
conditions. The primary~steady! and secondary~time-
averaged! flows thus obtained will be examined considerin

na.
ad,
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the relative order of magnitude. As the latter is much sma
compared with the former when we take into account
case of the small-amplitude~acoustic! wave, we only inves-
tigate the stability problem related to those basic flows@in-
duced by the steady streaming, i.e., Eq.~6! derived in Sec. II#
with dynamic and kinematic boundary conditions@e.g., cf.
parameterK0 in Eq. ~9!# linked to the perturbed waves b
using the verified numerical code~via the spectral method
@12,13#! @14#. We found that once the parameterK0 @comes
from the boundary conditions Eq.~9!# becomes 0.1, the criti
cal Reynolds number becomes 4873 which is less than
conventional case ('5772, obtained by Orszag using th
spectral method@12#!.

II. FORMULATIONS

We consider a plane channel of uniform thickness fil
with a homogeneous viscous fluid. The walls of the chan
on which traveling sinusoidal waves of small amplitudea are
not absolutely rigid are imposed. The vertical displaceme
of the upper and lower walls (y5d and 2d) are thus pre-
sumed to beh and2h, respectively, whereh5a cos@2p(x
2ct)/la#, la being the wave length andc the wave speed.x
and y are Cartesian coordinates, withx measured in the di-
rection of ~SA! wave propagation andy measured in the
direction normal to the mean position of the walls.

It would be expedient to simplify those equations by
troducing dimensionless variables. We have a character
velocity c and three characteristic lengthsa, la , andd. The
following variables based onc and d could thus be intro-
duced:

x85
x

d
, y85

y

d
, u85

u

c
, v85

v
c

, h85
h

d
,

c85
c

c d
, t85

c t

d
, p85

p

rc2
.

The amplitude ratioe, the wave numbera, and the Reynolds
number Re are defined by

e5
a

d
, a5

2pd

la
, Re5

c d

n
.

We shall seek a solution in the form of a series in the para
etere:

c5c01ec11e2c21•••,

]p

]x
5S ]p

]x D
0

1eS ]p

]x D
1

1e2S ]p

]x D
2

1•••,

with

u5
]c

]y
, v52

]c

]x
.

In this study, we assume that the Mach number is rat
small: Ma!1 ~consistent with previous experiments@4# or
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similar approaches@11#!, and then the adopted equations a
the incompressible Navier-Stokes equations which are a
ciated with the no-slip boundary conditions along the wa
walls. The two-dimensional (x andy) momentum equations
and the equation of continuity could be in terms of t
stream functionc if the pressure~p! term is eliminated. The
final governing equation is

]

]t
¹2c1cy¹

2cx2cx¹
2cy5

1

Re
¹4c, ¹[

]2

]x2
1

]2

]y2
,

~1!

and subscripts indicate the partial differentiation. Thus,
have

]

]t
¹2c01c0y¹

2c0x2c0x¹
2c0y5

1

Re
¹4c0, ~2!

]

]t
¹2c11c0y¹

2c1x1c1y¹
2c0x2c0x¹

2c1y2c1x¹
2c0y

5
1

Re
¹4c1 , ~3!

]

]t
¹2c21c0y¹

2c2x1c1y¹
2c1x1c2y¹

2c0xc0x

2¹2c2y2c1x¹
2c1y2c2x¹

2c0y5
1

Re
¹4c2 , ~4!

and other higher order forms. The fluid is subjected
boundary~dynamic and kinematic! conditions imposed by
the symmetric motion of the walls:u50, v56]h/]t at y
56(11h). The boundary conditions may be expanded
powers ofh and thene:

c0yu11e@cosa~x2t !c0yyu11c1yu1#

1e2Fc0yyyu1
2

cos2a~x2t !1c2yu11cosa~x2t !c1yyu1G
1•••50,

c0xu11e@cosa~x2t !c0xyu11c1xu1#

1e2Fc0xyyu1
2

cos2a~x2t !1cosa~x2t !c1xyu11c2xu1G
1•••52ea sina~x2t !. ~5!

The above equations, together with the condition of symm
try and a uniform pressure gradient in thex direction,
(]p/]x)05constant, yield

c05K0S y2
y3

3 D , K05
Re

2 S 2
]p

]x D
0

, ~6!

c15
1

2
$f~y!eia(x2t)1f* ~y!e2 ia(x2t)%, ~7!
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where the asterisk denotes the complex conjugate. A su
tution of c1 into Eq. ~3! yields

H d2

dy2
2a21 iaRe@12K0~12y2!#J S d2

dy2
2a2D f

22iaK0Ref50. ~8!

The boundary conditions are

fy~61!52K0 , f~61!561. ~9!

Similarly, with

c25
1

2
$D~y!1E~y!ei2a(x2t)1E* ~y!e2 i2a(x2t)%, ~10!

we have

Dyyyy52
iaRe

2
~ffyy* 2f* fyy!y , ~11!

F d2

dy2
2~4a222iaRe!G S d2

dy2
24a2D E

5 i2aReK0~12y2!S d2

dy2
24a2D E1 i4aK0ReE

1
iaRe

2
~fyfyy2ffyyy!50, ~12!

and the boundary conditions

Dy~61!1
1

2
@fyy~61!1fyy* ~61!#22K050,

Ey~61!1
1

2
fyy~61!2

K0

2
50.

A. Secondary effects due to free pumping

To simplify the approach and obtain preliminary analy
cal solutions of the above complicated equations and bo
day conditions, we first consider the case in which (]p/]x)0
vanishes orK05c050. This corresponds to the seconda
effect when we neglect the primary basic flow. Hence E
~9! and ~10! become

S d2

dy2
2a2D S d2

dy2
2ā2D f50, ā25a22 iaRe, ~13!

fy~61!50, f~61!561. ~14!

After lengthy algebraic manipulations, we obtain

f5c0eay1c1e2ay1c2eāy1c3e2āy,

where c05(A1A0)/det, c152(B1B0)/det, c25(C
1C0)/det, c352(T1T0)/det;
04630
ti-
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det5Aea2Be2a1Ceā2Te2ā,

A5eaā2~r 2e22ā2s2e2ā!22aāe2aw

1aāeaz~e22ār 1e2ās!,

A05e2aā2~r 2e22ā2s2e2ā!12aāeaz

2aāe2aw~e2ās1e22ār !,

B5e2aā2~r 2e22ā2s2e2ā!12aāeaz

2aāe2aw~e22ār 1e2ās!,

B05eaā2~r 2e22ā2s2e2ā!22aāe2aw

1aāeaz~e22ār 1e2ās!,

C5e2aaā~wseā2a2rzea2ā!2ae2a1āz~az2ās!

1ae2aw~aeā2aw2āea2ār !,

C05eaaā~wseā2a2rzea2ā!2az~zae2a2ā2āeās!

1aw~ae2(ā12a)w2āe2(2a1ā)r !,

T5e2aaā~zseā1a2rwe2(a1ā)!2aā~e2a2āzr2eāws!

1a2e2a~2e2az21e22aw2!,

T05eaaā~zseā1a2rwe2(a1ā)!2aā~e2āzr2eā22aws!

1a2ea~2e2az21e22aw2!,

with r 5s5w5z51.
To obtain a simple solution which relates to the mean fl

so long as only terms ofO(e2) are concerned, we see that
every term in thex-momentum equation is averaged over
interval of time equal to the period of oscillation@11#, we
obtain for our solution, as given by above equations,
mean pressure gradient

]p

]x
5e2S ]p

]x D
2

5e2FDyyy

2Re
1

iRe

4
~ffyy* 2f* fyy!G1O~e3!

5e2
a0

Re
1O~e3!, ~15!

wherea0 is the integration constant for the integration of E
~12!. Now, from Eq.~14!, we have

Dy~61!52
1

2
@fyy~61!1fyy* ~61!#,

whereDy(y)5a0y21a1y1a21C(y), and from Eq.~12!,
5-3
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C~y!5
a2Re2

2 F c0c2*

g1
2

e(a1ā* )y1
c0* c2

g2
2

e(a1ā)y

1
c0c3*

g3
2

e(a2ā* )y1
c0* c3

g4
2

e(a2ā)y1
c1c2*

g3
2

e(ā* 2a)y

1
c1* c2

g4
2

e(ā2a)y1
c1c3*

g1
2

e2(ā* 1a)y1
c1* c3

g2
2

e2(ā1a)y

1
c2c3*

g5
2

e(ā2ā* )y1
c2* c3

g5
2

e(ā* 2ā)y12
c2c2*

g6
2

e(ā* 1ā)y

12
c3c3*

g6
2

e2(ā* 1ā)yG ,

with g15a1ā* , g25a1ā, g35a2ā* , g45a2ā, g5

5ā2ā* , and g65ā1ā* . In practical applications we
must determinea0 from considerations of conditions at th
ends of the channel.a1 equals to zero because of the sym
metry of boundary conditions.

Oncea0 is specified@11#, our solution for the mean spee
~averaged over time! of secondary flow is

Ū5e2
Dy

2
5

e2

2
$C~y!2C~1!1R01a0@y221#%, ~16!

where R052@fyy(1)1fyy* (1)#/2, which has a numerica
value about 3 for a wide range ofa and Re.

For small amplitude waves, say,e50.01 or smaller,Ū is,
at most, of the order of magnitudeO(0.001) which is rather
small compared to the primary flow obtained fromc0 @cf.
Eq. ~6! for K0Þ50]. For fit our present interests here, w
shall only consider the stability of basic flows obtained fro
c0 @K0Þ0, with boundary conditions due to the acous
streaming, say Eq.~9!#.

B. Primary flow stability

To obtain the stability characteristics for acoustic strea
ing flows by using verified codes developed before@14# ~cal-
culating the Orr-Sommerfeld spectra!, we need to transform
Eq. ~8! into the Orr-Sommerfeld form by rescaling and red
mensionalization of physical parameters and variables m
tioned before~e.g., the careful selection ofK0 andc). Thus,
we have the linearized disturbance equation

~D22a2!~D22a2!f

5 iaRe@~ ū2C!~D22a2!f2~D2ū!f#, ~17!

whereD5d/dy, C5Cr1 iCi . Cr is the ratio between the
velocity of the propagating perturbation wave and the ch
acteristic velocity, andCi is the amplification factor. As for
the temporal stability problem, in which the growth or dec
of a disturbance in time is considered, we treat the~complex!
wave speedC as the eigenvalue parameter of the proble
The mean~basic! velocity profile is given by@cf. Eq. ~6!#
04630
-

n-

r-

.

ū512y2 ~18!

for 21<y<1. Boundary and interface conditions forf or
Df are already defined in Eq.~9! and are not the same a
previous approaches @12,14# @f(61)5Df(61)50
therein#.

The eigenvalue problem raised above could then
solved by using the verified code@14#, which follows or
adopts the spectral method@13# based on the Chebyshev
polynomial-expansion approach, after the equation a
boundary conditions are discretized. The algebraic or ma
equation~cf. Refs. @11,13#! is similar to that expressed in
@12# ~by Orszag!, except the dynamic and kinematic boun
ary conditions which become

(
n50

n[0(mod 2)

N

an51, (
n50

n[0(mod 2)

N

n2an52K0 , ~19!

(
n51

n[1(mod 2)

N

an521, (
n51

n[1(mod 2)

N

n2an52K0 . ~20!

Here we adapt Osborne’s algorithm@15# to first precondition
these complex matrices via rescaling, i.e., by certain dia
nal similarity transformations of the matrix~errors are in
terms of the Euclidean norm of the matrix! designed to re-
duce its norm@14#. The details of this algorithm could b
traced in Ref.@14#. The form of the reduced matrix is the
upper Hessenberg. We then perform the stabilizedLR trans-
formations for these matrices to get the eigenvaluesC5Cr
1 iCi ~please see also Ref.@14# for the details!.

III. RESULTS AND DISCUSSION

The preliminary verified results of this numerical cod
had been reported@14,16# for the cases of no-slip and sli

FIG. 1. Illustration of the temporal spectra (Cr ,Ci) for distur-
bance waves due to acoustic streaming (K050.001) effects. The
upper branch: Re55762.5 which is near Recr55762.3 for corre-
spondinga'1.02.
5-4
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boundary conditions in comparison with the bench-mark
sults of Orszag@12#. For example, we obtained the sam
spectra~e.g., case of Re510 000 anda51) and critical Rey-
nolds number (Recr;5772.2) for the test case: the plan
Poiseuille flow which Orszag obtained from CDC 7600@12#.
We then perform intensive calculations considering pres
objectives. The searching of Recr and correspondinga for
our interests (K0Þ50) here, however, is time consumin
and depends on the experiences.

We subsequently calculated those spectra forK0>0 ~ef-
fects due to acoustic streaming! with the associated dynami
and/or kinematic boundary~interface! conditions by care-
fully adjusting the Reynolds number~Re! and the wave num-
ber a. With preliminary calculations, we first found that a
K050.001, Recr decreases to around 5762.3. The tempor
spectra (Cr ,Ci) for both branches near this value were plo
ted into Figs. 1 and 2 for the direct illustration of effects d
to acoustic streaming. Note that all the units shown in Fig
and 2, ~and 3! are using quantities that are dimensionle
here. The instability mode triggers for the modeCr
'0.2642 once Re55762.5 anda51.0215 for the upper
branch. Similar spectra for the lower branch (Re55762.5
anda51.0192) are shown in Fig. 2 which indicates that t
instability mode triggers for the modeCr'0.2639.

We can also obtain the neutral boundary curves for s
cific Re anda with K050.01,0.1 and plot them Fig. 2. Fo
comparison with previous static-wall case@11#, we put pre-
vious results~without K0) into Fig. 3. For those flows with

FIG. 2. Illustration of the temporal spectra (Cr ,Ci) for distur-
bance waves due to acoustic streaming (K050.001) effects. The
lower branch: Re55762.5 which is near Recr55762.3 for corre-
spondinga'1.02. All the units as shown in Figs. 1 and 2~and 3!
are dimensionless.
n
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Re anda falling within the specific curve or the neutra
boundary (Re>Recr and a bounded in between!, they are
unstable. That is to say, any small disturbance will amplify
a finite time and/or in the downstream when Re is larger th
the critical ones (Recr with respect to the specific range o
a) which are fixed upon the curves. We have roughly Rcr
55673.5 and 4873 forK050.01 and 0.1 cases, respective
These are smaller than the critical Reynolds number of c
ventional cases~static wall: 5772! for the same no-slip flows
Note that, to use Eq.~17! with suitable transformations, onc
the ~SA! wave speedc is large, we must select~correspond-
ing! small K0 ~less than one! @16#!

To conclude in brief, we can observe that the instability
the flow due to acoustic streaming in plane channels occ
much earlier (Recr becomes 4873 forK050.1), which is not
favorable for the flow control in most applications. This la
ter observation might be interpreted as due to the wea
nonlinear coupling between the wall boundary and the ine
of the acoustic streaming flow. For the optimal flow-contr
usage in common scientific applications, either the range
~SA! wave numbers relevant to the noise wave@17# or the
Reynolds number of the basic flows must be carefully
lected.
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FIG. 3. Comparison of the effects due to acoustic stream
K050.01 and 0.1 on the neutral stability boundary of the pla
Poiseuille flow. Recr ~the critical Reynolds number of the flow!
' 5673.5 and 4873 for different cases.
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