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Stability of acoustic streaming flows in plane channels
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We study the stability of acoustic streaming flows of normal fluids induced by a small-amplitude surface
acoustic wave propagating along the walls of a confined parallel-plane channel or slab in the incompressible
flow regime. The secondary flows derived are of negligible effect to the stability characteristic after comparing
with the primary flow. The governing equation which was derived by considering the weakly nonlinear
coupling between the wavy wall and viscous fluid is obtained and then the eigenvalue problem is solved by a
numerical code together with the associated dynamic and kinematic conditions. The value of the critical
Reynolds number was found to be near 4873 which is smaller than the case 5772 for conventional pressure-

driven flows.
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I. INTRODUCTION fully by Rayleigh [8(c)] but that was for standing waves

only. Faraday’s experiments also were on standing waves.
Surface acoustic waM&AW) is an interesting and impor- The crucial step, from the point of view of both applications
tant subject in physics as well as in many other scientificand theory, was made in treating progresgive., traveling
applications[1,2]. One example is the characterization of waves. This was done originally by Longuet-Higgic)].
physical and chemical properties of complicated materialsHe treated both the no-slip case and the zero-stress case.
The other example is related to the possible means of pump-ater on, we also noticed that the first experimental confir-
ing molecules and atoms near or along surfaces under th@ation of the streaming in traveling waves was found by
perturbing influence of SAW3]. In fact, with the latter, it Longuet-Higgins(1960 for the solid wall, and later by the
has been reported that people can make microflow systensame author for a fluid-free surfaf@].
that could circulate heat-transfer fluids over silicon chips, Recently, due to the rapid progresses in SAW sensing
reconstitute dried drugs, and possibly synthesize chemica[4.0], there are renewed interests in this research field. Espe-
from liquid and solid constituentgt]. cially for gases, preliminary theoretical results in a free mo-
While Moroney et al. used 4.7 MHz ultrasonic Lamb |ecular and continuum regime showed some agreement with
waves in a 4um-thick composite membrane of silicon ni- previous approache®.g., the latter regime compared with
tride (2um) and piezoelectric zinc oxide dm) to induce liquid) [3,4]. According to the calculation in the nearly con-
pumping of water(inside a 250um-deep well, Nguyen tinuum regime, the flow velocity of the gas in a microtube is
et al. applied the same technique almost at the same fregroportional to the second power of the SAW displacement
guency range to a microsystem of %a and 500xm chan-  velocity (product of the SAW amplitude and circular fre-
nel for pumping air as well as watpt]. The key pointis that quency and this has also been experimentally confirmed
since the acousticA,-mode flexural platewave velocity is  (please see Refl11] for the cited references thergin
much lower than the sound velocity in typical fluids, the  We know, however, that most of the sensors, e.g., those
microstructure(system acts as a nearly lossless acousticoperated in microelectromechanical systetdEMS) appli-
waveguide when in contact with a fluid. This acoustically cations, were performed in wide dynamic range and high
driven micropump offers the advantages of low operatingsensitivity. Microchannels built in the microstructure of
voltages and gentle pumping with no valves involved. ThusMEMS are easily subjected to environment noises, such as
they could be also implemented in a wide range of physicalpscillations or vibrations, externally excited traveling waves,
chemical, and biological applicatioite.g., a few DNA sepa- etc. The stability characteristic for the acoustic streaming
ration or monitoring [5]. flow is thus of considerable importance to the flow control or
Acoustic or steady streaming flow, or, the mean flow in-mixing in microdomain since the bulicross-sectionsize of
duced by the interaction of surface waves and elastic boundhe microchannel is at most a few tens@fum) and the
aries has been intensively studied since late 188@56—9. wall of the microchannel is almost in submicrons or lesser.
The original or relevant approadttonsidering the liquid As we know, it is necessary to obtain curves of the neutral
could even be dated to early 183®@y Faraday8(a)]). Note  stability boundary from the stability equatigsay, the well-
that the theoretical treatment of streaming in an acousticatnown Orr-Sommerfeld equation; the basic flow could be a
boundary layer at a plane wall was first conducted successhear flow or plane Poiseuille flgvand associated boundary
conditions for the description of the hydrodynamical transi-
tion to turbulence in normal fluids. In this paper, we shall
*Present address: P.O. Box 30-15, Shanghai 200030, P.R. Chinfirst derive the relevant governing equations and boundary
The address after June 2004 is 24, Lane 260, Section 1, Muja Roadpnditions. The primary(steady and secondary(time-
Taipei, Taiwan 11646, R. China. averagefl flows thus obtained will be examined considering
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the relative order of magnitude. As the latter is much smallesimilar approachefl1]), and then the adopted equations are
compared with the former when we take into account thehe incompressible Navier-Stokes equations which are asso-
case of the small-amplitud@cousti¢ wave, we only inves- ciated with the no-slip boundary conditions along the wavy
tigate the stability problem related to those basic flgims  walls. The two-dimensionalx(andy) momentum equations
duced by the steady streaming, i.e., B).derived in Sec. []  and the equation of continuity could be in terms of the
with dynamic and kinematic boundary conditiofesg., cf.  stream functiony if the pressurdp) term is eliminated. The
parameteiK in Eq. (9)] linked to the perturbed waves by final governing equation is

using the verified numerical codwia the spectral method

[12,13) [14]. We found that once the parametés [comes J_, ) ) 1, ? 9
from the boundary conditions E¢Q)] becomes 0.1, the criti- EV Pt PV o=V ‘/’yzR_eV b V= w2 oy
cal Reynolds number becomes 4873 which is less than the y )
conventional case~5772, obtained by Orszag using the
spectral method12]). and subscripts indicate the partial differentiation. Thus, we
have
Il. FORMULATIONS
1% 1
We consider a plane channel of uniform thickness filled EV2¢0+ Yoy Viiox— lﬁOszlﬂOy:R—eV“lﬂo, 2

with a homogeneous viscous fluid. The walls of the channel

on which traveling sinusoidal waves of small amplitudare

not absolutely rigid are imposed. The vertical displacements = g2 2 2, _ 2, _ 2

of the upper and lower wallsy&d and —d) are thus pre- 5tv V2t YoV ax hay Vo dox ™ YoV 4y~ daxV oy
sumed to bep and — #, respectively, wherey=a cog2m(x
—ct)/\,], A, being the wave length antithe wave speed =— V4, 3
andy are Cartesian coordinates, withmeasured in the di- Re

rection of (SA) wave propagation ang measured in the
direction normal to the mean position of the walls.

It would be expedient to simplify those equations by in-
troducing dimensionless variables. We have a characteristic 1
velocity ¢ and three characteristic lengths\ ,, andd. The w2, _ 2., 2, _ w4
foIIowizg variables based on andd cgould thus be intro- Viy = YV 0y~ Y2V oy =gV, ()
duced:

d
EV2¢2+ Yoy V2 ax+ W1y V2t oy V2 hoxibox

and other higher order forms. The fluid is subjected to

v 7 boundary(dynamic and kinematjcconditions imposed by
c Ty the symmetric motion of the wallsi=0, v=*dn/dt aty
==*(1+»n). The boundary conditions may be expanded in
y powers of»n and thene:
lﬂ’:—, tr:_, pr:_.

cd d z thoyl 11 €[ COSa(X—1) Yoyl 1+ 1yl 1]
The amplitude ratie, the wave numbeg, and the Reynolds 42
number Re are defined by €

lﬂOyyyl 1

COSza’(X—t) + 1/12y|1+ cosa(x—t) lr//lyy|l}

! _ 2md R cd +...=0,
e—d, a= N e=V.

¢Ox| 1+ €[ cosa(x—1) ¢Oxy| 1t ¢1x| 1]
We shall seek a solution in the form of a series in the param-

etere: + ez[%xTyyhcosza(x— t) + COSa(X—1) Pyl 1+ Yoyl 1}
= o+ e+ Pt -,
W= ot et v +..-=—easina(x—t). (5)
J J J J
P _p) + e( _p) + €2 » +..n, The above equations, together with the condition of symme-
IX \IX[o N\ OX]y X/, try and a uniform pressure gradient in the direction,
. (dpl 9x),=constant, yield
with
y® Re/ dp
_ 9 _ 9y =KoY= F|: Ko=%|—27] - (6)
u=—, v=——. 3 2 IxX
ay X 0

In this study, we assume that the Mach number is rather

1 . .
— ia(x—t) * —ia(x—t)
small: Ma<1 (consistent with previous experimeri#]| or 4t 2{¢(y)e Ter(ye b ™
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where the asterisk denotes the complex conjugate. A substi-

tution of ¢, into Eq. (3) yields

L 2+iaRg1-Kg(1—-y?
iy “ iaRg1—Ko(1-y7)]

—2i aKoRegp=0.

2

I

2

_ aZ) ¢
8
The boundary conditions are
by(=1)=2K,,

Similarly, with

*1.

$(*+1) 9

1 ) .
Y2=5{D(y) +E(y)e?** 0+ Ex(y)e 1207V}, (10)

we have
iaRe . .
Dyyyy:_ 2 (¢¢yy_¢ ¢yy)ya (11)
d? d?
— —(4a*-2iaRe) || — —4a? |E
dy? dy?
2
=i2aReK0(1—y2)<—2—4a2 E+idaK ReE
dy
iaRe
+ T(¢y¢yy_ ¢¢yyy) =0, (12

and the boundary conditions

1
Dy(= 1)+ [y 1)+ dy(+1)] - 2Ko=0,

0.

1 Ko
Ey(= D)+ 5dy(¥1) =

A. Secondary effects due to free pumping

To simplify the approach and obtain preliminary analyti-

cal solutions of the above complicated equations and boun-

day conditions, we first consider the case in whigp/@x),

vanishes oiKy=¢,=0. This corresponds to the secondary
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det=Ae“—Be “+ Ce;—Te‘“,
A=e%a?(r%e 29— s2e?*) — 2qae” "W
+ aaez(e"20r +e2%s),
Ao=e “a?(r2e 29— s2e2%) + 2aae’z
— aae” "W(eXs+e2er),

B=e “a?(rZe 2*—s2e?%) + 2qaez

—aae”“w(e 2o +e2%s),

Bo=e%a?(r?e 2e—

s2e2*)—2qae” *w
+ aae®z(e 29 +e2%s),

C=e “aa(Wse&" “—rze* %) — ae®* *z(az— as)

+ ae”“W( e “w— ae® " °r),
Co=e"aa(Wse& “—rze* %) — az(zae?* *— ae®s)

+ aw( e @+ 2Dy — ge~Rat o)y,

T=e %aa(zset*—rwe™ (*T®) — ga(e2* %zr—e*ws)

+ a2e7 a( _ e2a22+ e72aW2) ,

To=e%aa(zse *—rwe (@7 2)) — ga(e”%zr—e* 22ys)
+ a?e?(—e??z%+ e~ 22w?),

with r=s=w=z=1.

To obtain a simple solution which relates to the mean flow
so long as only terms dD(€?) are concerned, we see that if
every term in the-momentum equation is averaged over an
interval of time equal to the period of oscillatidd1], we
obtain for our solution, as given by above equations, the
mean pressure gradient

W (ﬂ_p)
ax ¢ lax ,

effect when we neglect the primary basic flow. Hence Egs.

(9) and(10) become

d? s - —
(——a2> ——a’|$=0, a’=a’—iaRe, (13
dy? dy?
dy(£1)=0, ¢H(£1)==1. (14
After lengthy algebraic manipulations, we obtain
d=coe™+ce” Y+ cze;y+ cge‘;y,
where co=(A+Ap)/det, c,=—(B+Bg)/det, c,=(C

+Cp)/det, c3=—(T+Ty)/det;

Dyyy

2Re

:62

iRe
+ 5 (DB} — & byy) | +O(%)

=15
_ 2 3
=€ Re+O(e ), (15

wherea, is the integration constant for the integration of Eq.
(12). Now, from Eqg.(14), we have

1
Dy(£1)= = S[dyy(= 1)+ (£ 1)),

whereDy(y) =aoy*+a,y+a,+C(y), and from Eq.(12),
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with g1=a+a*, go=ata, gz=a—a*, g4=a—a, Js FIG. 1. lllustration of the temporal spectr&(,C;) for distur-
=a—a*, and gs=a+a*. In practical applications we bance waves due to acoustic streamiig€0.001) effects. The
must determine, from considerations of conditions at the upper branch: Re5762.5 which is near Re=5762.3 for corre-
ends of the channe&, equals to zero because of the sym- Spondinga~1.02.
metry of boundary conditions.

Oncea, is specified 11], our solution for the mean speed
(averaged over timeof secondary flow is

u=1-y? (18)

for —1=<y=<1. Boundary and interface conditions feror

— LDy € ) D¢ are already defined in Eq9) and are not the same as
U=e"5 =S{Cy)-CD+Rotacly’ =11}, (16 previous approaches[12,14 [#(+1)=D¢(=1)=0
therein.
where Ry= —[ ¢by,(1)+ ¢},(1)1/2, which has a numerical The eigenvalue problem raised above could then be

solved by using the verified codd4], which follows or
adopts the spectral methdd3] based on the Chebyshev-
polynomial-expansion approach, after the equation and
boundary conditions are discretized. The algebraic or matrix
equation(cf. Refs.[11,13)) is similar to that expressed in
[12] (by Orszag, except the dynamic and kinematic bound-
ary conditions which become

value about 3 for a wide range of and Re.

For small amplitude waves, sag=0.01 or smallerl is,
at most, of the order of magnitud2(0.001) which is rather
small compared to the primary flow obtained frafg [cf.
Eq. (6) for Ko# =0]. For fit our present interests here, we
shall only consider the stability of basic flows obtained from
Yo [Ko#0, with boundary conditions due to the acoustic

streaming, say Eq9)]. N N
> a,=1, X n?a,=2K,, (19
B. Primary flow stability nEO(de 2) nEO(mgd 2)
n= n=
To obtain the stability characteristics for acoustic stream- N N
ing flows by using verified codes developed befdr4] (cal- )
culating the Orr-Sommerfeld specirave need to transform 2 a=-1 E an=2K,. (20
Eq. (8) into the Orr-Sommerfeld form by rescaling and redi- n=(med2) n=Lmed2)

mensionalization of physical parameters and variables men-
tioned beforele.g., the careful selection #f, andc). Thus, Here we adapt Osborne’s algoritHib] to first precondition

we have the linearized disturbance equation these complex matrices via rescaling, i.e., by certain diago-
nal similarity transformations of the matriéerrors are in
terms of the Euclidean norm of the mairisesigned to re-

_ duce its norm[14]. The details of this algorithm could be

a?)¢p—(D?u)¢], (17)  traced in Ref[14]. The form of the reduced matrix is then
upper Hessenberg. We then perform the stabilizBdtrans-

whereD=d/dy, C=C,+iC;. C, is the ratio between the formations for these matrices to get the eigenvallesC,

velocity of the propagating perturbation wave and the char-+iC; (please see also Rdfl4] for the detail$.

acteristic velocity, andC; is the amplification factor. As for

the temporal stability problem, in which the growth or decay

of a disturbance in time is considered, we treat(dwmplex

wave speedC as the eigenvalue parameter of the problem. The preliminary verified results of this numerical code

The mean(basig velocity profile is given byfcf. Eq. (6)] had been reportefil4,16 for the cases of no-slip and slip

(D?~a?)(D*~a?) ¢
=iaRg(u—C)(D%—

Ill. RESULTS AND DISCUSSION
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. . FIG. 3. Comparison of the effects due to acoustic streaming:
FIG. 2. lllustration of the _temporal _spectrﬁ:,(,ci) for distur- Ky=0.01 and 0.1 on the neutral stability boundary of the plane
pance waves due io acoustlp streamnlfg;#0.00l) effects. The Poiseuille flow. Rg (the critical Reynolds number of the flow
lower branch: Re5762.5 which is near Re=5762.3 for corre-  _ 5673.5 and 4873 for different cases

spondinga~1.02. All the units as shown in Figs. 1 andahd 3
are dimensionless.

Re and e« falling within the specific curve or the neutral
boundary conditions in comparison with the bench-mark reboundary (ReRe., and « bounded in betweenthey are
sults of Orszag12]. For example, we obtained the same unstable. That is to say, any small disturbance will amplify in
spectrae.g., case of Re 10 000 andv=1) and critical Rey-  a finite time and/or in the downstream when Re is larger than
nolds number (Rg~5772.2) for the test case: the plane the critical ones (Rg with respect to the specific range of
Poiseuille flow which Orszag obtained from CDC 760@]. a) which are fixed upon the curves. We have roughly,Re
We then perform intensive calculations considering present5673.5 and 4873 fok,=0.01 and 0.1 cases, respectively.
objectives. The searching of Reand corresponding for ~ These are smaller than the critical Reynolds number of con-
our interests IKo# =0) here, however, is time consuming ventional caseéstatic wall: 5772 for the same no-slip flows.
and depends on the experiences. Note that, to use Eq17) with suitable transformations, once

We subsequently calculated those spectrakige0 (ef-  the (SA) wave speed is large, we must sele¢torrespond-
fects due to acoustic streamjngith the associated dynamic ing) small K, (less than ong[16]!
and/or kinematic boundaryinterface conditions by care- To conclude in brief, we can observe that the instability of
fully adjusting the Reynolds numbéRe) and the wave num- the flow due to acoustic streaming in plane channels occurs
ber a. With preliminary calculations, we first found that as much earlier (Rg becomes 4873 fak,=0.1), which is not
Ky=0.001, Rg, decreases to around 5762.3. The temporarfavorable for the flow control in most applications. This lat-
spectra C,,C;) for both branches near this value were plot-ter observation might be interpreted as due to the weakly
ted into Figs. 1 and 2 for the direct illustration of effects duenonlinear coupling between the wall boundary and the inertia
to acoustic streaming. Note that all the units shown in Figs. bf the acoustic streaming flow. For the optimal flow-control
and 2,(and 3 are using quantities that are dimensionlessusage in common scientific applications, either the range of
here. The instability mode triggers for the modg, (SA) wave numbers relevant to the noise wat&] or the
~0.2642 once Re5762.5 anda=1.0215 for the upper Reynolds number of the basic flows must be carefully se-
branch. Similar spectra for the lower branch ¢R&762.5 lected.
anda=1.0192) are shown in Fig. 2 which indicates that the
instability mode triggers for the mode,~0.2639. ACKNOWLEDGMENTS
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